
Big Data
Class

LECTURER: DAN FELDMAN

TEACHING ASSISTANTS:

IBRAHIM JUBRAN

ALAA MAALOUF

Department of Computer Science, University of Haifa.

Traditional Measurements

Input size: n

Running time: t n

Memory (space): s n

In 𝐶𝑆 and in this class we use the "𝑂“ notation:
- We do not try to optimize constants.

𝑛 → ∞ (justifies not handling constants).

“Memory”: usually refers to RAM. Might also be HDD.
- Memory for running an algorithm might be much larger than 𝑛 (the input size).

Big data Input

Data dimensionality (# of features): 𝑑

Data sparsity: 𝑠

n = # of points seen so far (→infinity)

M = # of machines

update (insertion/deletion) time

Per coordinate/item

𝑛
0 0 0 1 0 0 1 0 0 0 0 0 . . . 0 1

𝑑

𝑠

Big data models

Cloud

Data generator

𝑝1

Memory

Space ≪ 𝒏

Processing unitStreaming-Algorithms:

Big data models

Cloud

Data generator

𝑝1

Memory

Space ≪ 𝒏

Processing unitStreaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3

𝑤1 ⋅

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3

𝑤1 ⋅

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3𝑝4

𝑤1 ⋅

𝑤2 ⋅

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3𝑝4

𝑤1 ⋅

𝑤2 ⋅

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3
𝑝4

𝑤1 ⋅

𝑤2 ⋅

𝑤3 ⋅

Streaming-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≪ 𝒏

Processing unit

𝑝1

𝑝3
𝑝4

𝑤1 ⋅

𝑤2 ⋅

𝑤3 ⋅𝑝5

Streaming-Algorithms:

Big data models

Cloud

Data generator
Memory

Space ≪ 𝒏

Processing unitStreaming-Algorithms:

𝑝1

𝑝3
𝑝4

𝑤1 ⋅

𝑤2 ⋅

𝑤3 ⋅𝑝5

𝑝2

𝑤1
′ ⋅

𝑤3
′ ⋅

𝒘𝟒 ⋅𝑤2 ⋅

𝑤3
′ ⋅

Cloud

Data generator

𝑝1

Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1𝑝2

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2𝑝3

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑝3

𝑤1 ⋅

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑝3

𝑤1 ⋅

𝑤2 ⋅

𝑝4

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑝3

𝑤1 ⋅

𝑤2 ⋅

𝑝4

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝4

𝑝3𝑤3 ⋅

𝑝5

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝4

𝑝3𝑤3 ⋅

𝑝5

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝5

𝑝4𝑤4 ⋅

𝑝6

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝5

𝑝4𝑤4 ⋅

𝑝6

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝4𝑤4 ⋅

𝑝6

𝑝5𝑤5 ⋅

𝑝7

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝4𝑤4 ⋅𝑝6

𝑝5𝑤5 ⋅

𝑝7

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5 ⋅

𝑝7

𝑝6𝑤6 ⋅

𝑝8

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5 ⋅

𝑝7

𝑝6𝑤6 ⋅

𝑝8

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1 ⋅

𝑤2 ⋅

𝑝3𝑤3 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5 ⋅

𝑝6𝑤6 ⋅

𝑝8

𝑤1′
⋅

𝑤5′ ⋅

𝑤7 ⋅

𝑝7

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1′ ⋅

𝑤2 ⋅

𝑝7𝑤7 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5′ ⋅

𝑝6𝑤6 ⋅

𝑝8𝑝9

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1′ ⋅

𝑤2 ⋅

𝑝7𝑤7 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5′ ⋅

𝑝6𝑤6 ⋅

𝑝8

𝑝9

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1′ ⋅

𝑤2 ⋅

𝑝7𝑤7 ⋅

𝑝4𝑤4 ⋅

𝑝5𝑤5′ ⋅

𝑝6𝑤6 ⋅

𝑝9

𝑤4′ ⋅

𝑤2′ ⋅

𝑤8 ⋅
𝑝8

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1′ ⋅

𝑝7𝑤7 ⋅

𝑝4

𝑝5𝑤5′ ⋅

𝑝8

𝑝9

𝑤4′ ⋅

𝑤2′ ⋅

𝑤8 ⋅

𝑝1

𝑝2

𝑤1′ ⋅

𝑝7𝑤7 ⋅

𝑝4

𝑝5𝑤5′ ⋅

𝑝8

𝑤4′ ⋅

𝑤2′ ⋅

𝑤8 ⋅

Cloud

Data generator
Space ≪ 𝒏

Processing unit 1

Streaming and distributed algorithms:

Space ≪ 𝒏

Processing unit 2 Server

Can be:
▪ One-pass (important: const. update time).
▪ Multiple passes (for finite sets).
▪ Realtime / non-realtime.
▪ Nimble model (sublinear communication time).
▪ Continuous model (save communication).

𝑝1

𝑝2

𝑤1′ ⋅

𝑝7𝑤7 ⋅

𝑝4

𝑝5𝑤5′ ⋅

𝑝8

𝑝9

𝑤4′ ⋅

𝑤2′ ⋅

𝑤8 ⋅

𝑤1′′ ⋅

𝑤4′′ ⋅

𝑤8 ⋅

𝑝1

𝑝4
𝑝8

Big data models

Cloud

Data generator

𝑝1

Memory

Space ≥ 𝒏

Processing unitOnline-Algorithms:

Big data models

Cloud

Data generator

𝑝1

Memory

Space ≥ 𝒏

Processing unitOnline-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3𝑝4

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3𝑝4

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3
𝑝4

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3
𝑝4𝑝5

Online-Algorithms:

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3

𝑝4

𝑝5

Online-Algorithms:

𝑝6

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3

𝑝4

𝑝5

Online-Algorithms:

𝑝6

Big data models

Cloud

Data generator

𝑝2

Memory

Space ≥ 𝒏

Processing unit

𝑝1

𝑝3

𝑝4

𝑝5

Online-Algorithms:

𝑝6𝑝7

Processing units

Can be:
▪ Threads

▪ Shard memory (centralized)
▪ Machines (network, cloud)

▪ Distributed Data
▪ Possible Graph of Communication

▪ GPU (limited parallel local computations)
▪ IoT – low energy and weak computations: Arduino, Rpie

▪ Sensors that collect a lot of data, usually to the web
▪ Real-Time: Face recognition (sec), Quadcopters (msec), Video Stre

Computation models

Dynamic-Model:

Data

Web / HDD

Updated
Model

Instant
update

Old model

Insert

Delete

▪ Off-line
▪ Streaming (insertions only)
▪ Dynamic Data (+ deletions)

▪ Sliding window
▪ Turn-style model (coordinates updates)
▪ Kinematic data (moving points)

Memory Computer / Cloud

𝐥𝐨𝐠𝒏

Computation unit

Motivation

New computation models

- Big Data

- Streaming real-time data

- Distributed data

Limited hardware

- Computation: IoT, GPU

- Energy: smartphones, drones

Common solution:

- New optimization algorithms

How to handle

all these new computation models?

• Possible approach:

– design new learning/optimization algorithms under the new constraints

• In this class:

– Use data summarization/reduction (called core-set)

– Solve problem on coreset using existing algorithms

Data summarization via Core-sets

f() f()

Less:

Time

Memory,

Energy

Cost, …

Definition: Let

➢𝑃 be a set of 𝑛 elements.

➢𝑄 be a set of possibly infinite elements / queries.

➢𝜔: 𝑃 → 0,∞ .

➢𝑓: 𝑃 × 𝑄 → ℝ be a cost function.

The tuple 𝑃,𝜔, 𝑄, 𝑓 is called a query space.

➢ The cost of a query 𝑞 ∈ 𝑄 is defined by

ҧ𝑓 𝑃, 𝜔, 𝑞 ≔

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞

Query Space

Problem: One mean

➢𝑃 = p1, ⋯ , 𝑝𝑛 ⊆ ℝ𝑑.

➢𝑄 = ℝ𝑑 (every possible point in ℝ𝑑).

➢𝜔: 𝑃 → 0,∞ .

➢𝑓 𝑝, 𝑞 = 𝑝 − 𝑞 2 for every 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄.

The tuple 𝑃,𝜔, 𝑄, 𝑓 is our query space.

Query Space

𝑃

q

𝑤 𝑝1

𝑤 𝑝2

𝑤 𝑝17 𝑝1

𝑝2

𝑝17

𝑝2 − 𝑞 2

Problem: Points to Hyperplanes

➢𝐴 =

−𝑎1 −
⋮

−𝑎𝑛 −
∈ 𝑅𝑛×𝑑 (𝑛 points in 𝑅𝑑)

➢S = 𝑅𝑑 (The normals of hyperplanes in 𝑅𝑑)

➢𝜔 a = 1 for every 𝑎 ∈ 𝐴.

➢𝑓 𝑎, 𝑥 = 𝑎𝑥 2 for every 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑆.

→

𝑖=1

𝑛

𝜔 𝑎𝑖 ⋅ 𝑓 𝑎𝑖 , 𝑥 = 𝐴𝑥 2

The tuple A,𝜔, S, 𝑓 is our query space.

Query Space

Exact coresets

Exact coreset: 𝐶, 𝜇 is an exact coreset (usually 𝐶 ⊆ 𝑃, 𝜇: 𝐶 → 0,∞),
if for every 𝑞 in 𝑄 we have that the sum of the cost function on 𝑃 with
query 𝑞 is the same as the sum of the cost function on 𝐶 with query 𝑞.

∀𝒒 ∈ 𝑸:

𝒑∈𝑷

𝒘 𝒑 ⋅ 𝒇(𝒑, 𝒒) =

𝒄∈𝑪

𝝁 𝒄 ⋅ 𝒇(𝒄, 𝒒)

▪ Input: Query space (𝑃,𝑤, 𝑄, 𝑓)

Exact Coreset - Example:
Points to Hyperplanes

Reminder: QR Decomposition

Decomposition of 𝐴 ∈ 𝑅𝑛×𝑑 into 𝐴 = 𝑄𝑅 where:

𝑄 ∈ 𝑅𝑛×𝑑 is an orthogonal matrix and 𝑅 ∈ 𝑅𝑑×𝑑 is an upper triangular matrix.

Exact Coreset via QR-Decomposition

Input: Points−Hyperplane Query Space: 𝐴,𝑤, 𝑆, 𝑓 .

Goal: Compute 𝑅 ∈ ℝ𝑑×𝑑 such that 𝑓 𝐴, 𝑥 = 𝑓(𝑅, 𝑥) for every 𝒙 ∈ 𝑺.

Let 𝑄, 𝑅 be the 𝑄𝑅-decomposition of 𝐴. For every 𝑥 ∈ 𝑆 it holds that:

𝒇 𝑨, 𝒙 = 𝑨𝒙 𝟐 = 𝑸𝑹𝒙 𝟐 = 𝑹𝒙 𝟐 = 𝒇(𝑹, 𝒙)

Hence, the rows of 𝑅 are an exact coreset (yet not a subset of the data) for the
Points-Hyperplane Query Space problem since:

∀𝑥 ∈ 𝑆:
𝒇 𝑨, 𝒙 = 𝑨𝒙 𝟐 = 𝑹𝒙 𝟐 = 𝒇(𝑹, 𝒙)

𝐴 = 𝑄𝑅 𝑄𝑇𝑄 = 𝐼

𝐴 ∈ ℝ𝑛×𝑑 𝑅 ∈ ℝ𝑑×𝑑

Exact Coreset - Example

Problem: 1-mean

Input: The query space 𝑃,𝑤, 𝑄, 𝑓 of 1-mean. We currently assume that
𝑤 𝑝 = 1 for every 𝑝 ∈ 𝑃.

Goal: Compute a pair 𝐶, 𝜇 such that

∀𝒙 ∈ 𝑸

𝒑∈𝑷

𝟏 ⋅ 𝒑 − 𝒙 𝟐 =

𝒄∈𝑪

𝝁 𝒄 ⋅ 𝒄 − 𝒙 𝟐

x

𝒑∈𝑷

𝒑 − 𝒙 𝟐 =

𝑝∈𝑃

𝑝 2 + 𝑥 2 − 2𝑝𝑇𝑥 =

𝑝∈𝑃

𝑝 2 +

𝑝∈𝑃

𝑥 2 − 2

𝑝∈𝑃

𝑝𝑇𝑥

=

𝑝∈𝑃

𝑝 2 + 𝒏 ⋅ 𝒙 𝟐 − 𝟐

𝑝∈𝑃

𝑝𝑇 𝒙

Exact 1-𝑚𝑒𝑎𝑛 using 3 first moments:

The statistics that define the set 𝑃

Problem: 1-mean

Exact Coreset - Example

Solution #1:
Store the three statistics in memory.

However, they do not satisfy our definition of
Exact Coreset!

Solution #2:

Try to find a an exact coreset (subset) 𝐶 of the data and a weights 𝜔: 𝐶 → 𝑅 such that:

𝑝∈𝑃

𝑝 2 =

𝑐∈𝐶

𝜔(𝑐) 𝑐 2

P = 𝒏 =

𝑐∈𝐶

𝜔(𝑐)

𝑝∈𝑃

𝑝𝑇 =

𝑐∈𝐶

𝜔(𝑐)𝑐𝑇

Problems with solution #1:

- If the input data is sparse, the vector σ𝒑∈𝑷𝒑
𝑻 might not be sparse!

- The vector σ𝒑∈𝑷𝒑
𝑻 is not part of the input data. We prefer our representatives to be a

subset of the input data!

Exact Coreset - Example

1-mean queries

Solution #2:

1) Build new vectors in 𝑅𝑑+2:

𝒑𝒊
′ =

𝒑𝒊
𝒑𝒊

𝟐

𝟏

2) Find a 𝐿𝑖𝑛𝑒𝑎𝑟 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 of the mean of 𝑃. This combination is a subset 𝐶 ⊆ 𝑃
of the vectors of size 𝐶 = 𝑑 + 2 and a set 𝜇 of 𝑑 + 2 weights.
The set 𝐶 satisfies the three properties needed.

Problem with solution #2:

The weights are not bounded (might be negative and huge → numerical problems).

Preliminaries - Convex combination

A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is a linear combination of
points where all coefficients are non-negative and sum
to 1.

A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑟𝑒𝑔𝑖𝑜𝑛 is a region where, for every pair of
points within the region, every point on the straight line
segment that joins the pair of points is also within the
region.

A 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 of a set 𝑃 is is the smallest convex set
that contains 𝑃.

Every point 𝑥 in a convex hull of a set of points 𝑃 can
be written as a convex combination of a finite number
of points in 𝑃.

𝑥

𝑝1 𝑝2

𝑝5

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3 𝜆4

𝑥 =

𝑖=1

5

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,

𝑖=1

5

𝜆𝑖 = 1

𝜆5

1-mean queries

Solution #3:

1) Build new vectors in 𝑅𝑑+2:

𝒑𝒊
′ =

𝒑𝒊
𝒑𝒊

𝟐

𝟏

2) Find a 𝐶𝑜𝑛𝑣𝑒𝑥 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 of the mean of 𝑃 using 𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚.
This combination is a subset 𝐶 ⊆ 𝑃 of the vectors of size 𝐶 = 𝑑 + 3 and a set
𝜇 of 𝑑 + 3 positive weights that sum to one.
The set 𝐶 satisfies the three properties needed.

Caratheodory’s theorem

“If a point 𝑥 ∈ 𝑅𝑑 lies in the convex hull of a set 𝑃, there is a
subset 𝑃′of 𝑃 consisting of 𝑑 + 1 or fewer points such that 𝑥 lies in the convex
hull of 𝑃′.”

𝑥 =

𝑖=1

3

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,

𝑖=1

3

𝜆𝑖 = 1

𝑥

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3

𝑝1 𝑝2

𝑝5𝑝5

Caratheodory’s theorem - intuition

𝜆1𝑝1

𝑥

Assume that 𝑥
is the origin.

𝜆2𝑝2

𝜆3𝑝3

𝜆4𝑝4

𝜇4𝑝4

𝜇1𝑝1

𝜇2𝑝2
𝜇3𝑝3

𝝀𝟏
′ = 𝝀𝟏 − 𝜶𝝁𝟏=0

𝛼𝜇2𝑝2

𝛼𝜇3𝑝3

𝛼𝜇4𝑝4

𝜆𝑖 = 1,𝜇𝑖 = 0,𝜇𝑖𝑝𝑖 = 0.

→𝛼𝜇𝑖𝑝𝑖 = 𝛼𝜇𝑖𝑝𝑖 = 0

→𝜆𝑖′ = 𝜆𝑖 − 𝛼𝜇𝑖

=𝜆𝑖 − 𝛼𝜇𝑖 = 1

Linear combination: 𝜇𝑖. One of them is negative.

Convex combination: 𝜆𝑖. All are positive.

1-mean queries

Solution #3:

Using 𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 we can represent the vector

σ𝒊=𝟏
𝒏 𝒑𝒊

′

𝒏
=

σ𝒊=𝟏
𝒏

𝒑𝒊

𝒑𝒊
𝟐

𝟏

𝒏
=

σ𝒊=𝟏
𝒏 𝒑𝒊

σ𝒊=𝟏
𝒏 𝒑𝒊

𝟐

𝒏

𝒏

by a set of (𝑑 + 3) input points and (𝑑 + 3) weights.

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

0 0 0 𝟏 0 0 0 0 0 0 0 0 . . . 0 𝟏

𝜆1 ∗

𝜆2 ∗

𝜆𝑑+3 ∗

Saved in memory

𝑝′1

𝑝′2

𝑝′𝑑+3

1-center / minimum enclosing ball

▪ Given a set of 𝑛 points P in 𝑅𝑑, find the point 𝑞 ∈ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓 𝑷, 𝒒 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒒

x

Motivation:
Where should we place an antenna if the price paid is the

antenna’s distance to the farthest customer?

Minimum enclosing ball

Optimal solution in 𝑅𝑑:

Claim: A sphere in 𝑅𝑑 is determined by 𝑑 + 1.

Algorithm: Exhaustive search over all
𝑛

𝑑+1
tuples of 𝑑 + 1 points.

Running time: 𝑛𝑂 𝑑 .

Minimum enclosing ball - heuristic

Hough transform:

-A heuristic for finding a circle that best fits the data.

-Divides the circle parametric space into small fixed-size cells (grid) with no optimality
guarantee. (Assumes circle radius is in range [𝑟1, 𝑟2]).

𝑛 𝑝𝑜𝑖𝑛𝑡𝑠
𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟𝑎𝑑𝑖𝑢𝑠 𝑟 ∈ 𝑟1, 𝑟2

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑎, 𝑏 ∈ 𝑐𝑖𝑟𝑐 𝑥, 𝑦, 𝑟
𝐴 𝑎, 𝑏, 𝑟 + +;

𝑎

𝑏

𝑟
𝐴

𝑓𝑜𝑟
𝑒𝑎𝑐ℎ
𝑝𝑜𝑖𝑛𝑡
(𝑥, 𝑦)

𝐿𝑒𝑡 𝑐𝑖𝑟𝑐 𝑥, 𝑦, 𝑟 = 𝑎, 𝑏 𝑎 − 𝑥, 𝑏 − 𝑦 = 𝑟}.

Assume every data point is a circle center,

and “vote” for each point on that circle.

𝐹𝑖𝑛𝑑 𝑔𝑙𝑜𝑏𝑎𝑙
𝑚𝑎𝑥𝑖𝑚𝑎 𝑜𝑓 𝐴

The global maxima are

the “best fitting” circles

(the circles with maximal

number of votes)

Hough transform - example

𝑥

𝑦

𝑥

𝑦

1 3 4

2
3

𝑟 = 3

0

2 0 𝟑

2

1

2

3

4

1 2 3 4

𝐴𝑟=3

4

Problem: One center

➢𝑃 = p1, ⋯ , 𝑝𝑛 ⊆ ℝ𝑑.

➢𝑄 = ℝ𝑑 (every possible point in ℝ𝑑).

➢𝜔 𝑃 = 1 for every 𝑝 ∈ 𝑃.

➢𝑓ar 𝑃, 𝑞 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒒 for every 𝑞 ∈ 𝑄.

The tuple 𝑃,𝜔, 𝑄, 𝑓𝑎𝑟 is our query space.

Query Space

𝑃

q

𝑝1

𝑝2

𝑝17

1-center

Input: The query space (𝑃,𝑤, 𝑄, 𝑓𝑎𝑟) of one center.

Special case:

Exact coreset for 𝟏-𝒄𝒆𝒏𝒕𝒆𝒓 queries when 𝑷 ⊂ 𝑹 and 𝒒 ∈ 𝑹𝒅:

x

The farthest point from every query 𝒒 ∈ 𝑹𝒅 is one of the edge points!

𝜀-Coresets

Let 𝐴 be a set of elements. Let 𝑃,𝜔, 𝑄, 𝑓 be a query space where 𝑃
⊆ 𝐴.

An 𝜀-coreset is a set 𝐶, 𝜇 , where 𝐶 ⊆ 𝐴, 𝜇: 𝐶 → 0,∞ , such that
for every 𝑞 ∈ 𝑄 we have that:

1 − 𝜀 ⋅

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞 ≤

𝑐∈𝐶

𝜇 𝑐 ⋅ 𝑓 𝑐, 𝑞 ≤ 1 + 𝜀 ⋅

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞 −

𝑐∈𝐶

𝜇 𝑐 ⋅ 𝑓 𝑐, 𝑞 ≤ 𝜀 ⋅

𝑝∈𝑃

𝜔 𝑝 ⋅ 𝑓 𝑝, 𝑞

𝜀-Coreset for 1-Center / Enclosing Balls

1) Choose an arbitrary point 𝑢 ∈ 𝑃

𝑢

2) Find the farthest point 𝑧 ∈ 𝑃 from 𝑢

𝑢

𝑧

𝜀-Coreset for 1-Center / Enclosing Balls

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑢

𝑧

𝑟

𝜀-Coreset for 1-Center / Enclosing Balls

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝑟

𝜀-Coreset for 1-Center / Enclosing Balls

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝑟

2𝑟

𝜀-Coreset for 1-Center / Enclosing Balls

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝑧

𝑢

𝜖𝑟

2𝑟

𝜀-Coreset for 1-Center / Enclosing Balls

3) Construct a grid of
2

𝜖2
cells of

size 𝜖𝑟 × 𝜖𝑟, centered at 𝑢
𝑧

𝑢

𝜖𝑟

2𝑟

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝜀-Coreset for 1-Center / Enclosing Balls

4) Pick a representative point

from each non-empty cell

𝑧

𝑢

𝜖𝑟

2𝑟

𝑟 ≔ 𝑑𝑖𝑠𝑡(𝑢, 𝑧)

𝜀-Coreset for 1-Center / Enclosing Balls

5) 𝐶 ≔ the set of

the O
1

𝜖2
representatives

𝜀-Coreset for 1-Center / Enclosing Balls

5) Return 𝐶

𝜀-Coreset for 1-Center / Enclosing Balls

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝑞 ≔ an arbitrary query point

𝑞

𝑓𝑎𝑟 𝑃, 𝑞 = max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑓𝑎𝑟 𝐶, 𝑞 = max
𝑐∈C

𝑑𝑖𝑠𝑡(𝑐, 𝑞)

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

Need to proof :

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑂(𝜖)𝑓𝑎𝑟 𝑃, 𝑞

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂 𝜖𝑟

𝜖𝑟

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

Main observation:

Every ball that covers 𝑢 and 𝑧, has a diameter of at least 𝑟.

𝑟 ≤ 2𝑓𝑎𝑟(𝑃, 𝑞)

𝑧

𝑢

𝑟

𝑞𝑂(𝜖𝑟) ≤ 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂 𝜖𝑟

≤ 𝑓𝑎𝑟 𝐶, 𝑞 + 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝜖𝑟 ≤ 𝑂(𝜖)𝑓𝑎𝑟(𝑃, 𝑞)

𝑞

𝜀-Coreset for 1-Center / Enclosing Balls
Proof of Correctness

u

1) Choose an arbitrary point 𝑢 ∈ 𝑃

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls

2) Draw a “star” of (
2𝜋

𝜖
) lines around 𝑢

𝑢

𝜖

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls

3) 𝑃′ ≔ Projection of 𝑃 onto the lines

𝑢

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls

4) C ≔ union of endpoints on the lines

𝑢

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls

5) Return C

Smaller Coreset
𝜀-Coreset for 1-Center / Enclosing Balls

𝐶 is a coreset for 𝑃′

𝑃′ is a coreset for 𝑃

𝐶 is a coreset for 𝑃

(Large coreset but only few lines)

(Transitive Property)

Smaller Coreset - Proof
𝜀-Coreset for 1-Center / Enclosing Balls

Claim: 𝐶 is a coreset for 𝑃′

𝐶 ≔

𝑃′ ≔ ∪

Claim: 𝐶 is a coreset for 𝑃′

𝐶 ≔

𝑃′ ≔ ∪

 𝑃′ ≔

𝑃𝑖′ ≔

∪

𝑃𝑖′

𝑃𝑖′

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

Claim: 𝐶 is a coreset for 𝑃′

∪𝑃𝑖′ ≔

𝐶𝑖 ≔

𝐶𝑖

𝐶𝑖

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶

Claim: 𝐶 is a coreset for 𝑃′

𝐶𝑖

𝐶𝑖

𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶

 (By proof for d=1)

𝐶𝑖 is a coreset for 𝑃𝑖

Claim: 𝐶 is a coreset for 𝑃′

𝑃1𝑃𝑖′ ≔ intersection of 𝑃′
with the i-th line

𝐶𝑖 ≔𝑃′ ∩ 𝐶

(By proof for d=1)

𝐶𝑖 is a coreset for 𝑃𝑖

(Union Rule)

𝐶 ≔ 𝑖ڂ 𝐶𝑖 is a coreset for 𝑃′ ≔ 𝑖𝑃𝑖ڂ

𝑃2

𝑃3

𝑃4

𝑃5

𝑃2𝜋
𝜖

Claim: 𝑃′ is a coreset for 𝑃

𝑞 ≔ an arbitrary query point

u

𝑃 ≔

𝑃′ ≔
𝑞

Claim: 𝑃′ is a coreset for 𝑃

𝑞 ≔ an arbitrary query point

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)

Claim: 𝑃′ is a coreset for 𝑃

𝑞 ≔ an arbitrary query point

𝑃 ≔

𝑃′ ≔
𝑞

𝐶 ⊆ 𝑃 → 𝑓𝑎𝑟 𝐶, 𝑞 ≤ 𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)

Claim: 𝑃′ is a coreset for 𝑃

Need to prove:

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)

Claim: 𝑃′ is a coreset for 𝑃

Need to prove:

𝑃 ≔

𝑃′ ≔
𝑞

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞

𝑓𝑎𝑟(𝑃′, 𝑞)

𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑓𝑎𝑟 𝑃, 𝑞 ≤ 𝜖𝑓𝑎𝑟 𝑃, 𝑞

𝑞
𝑝

𝑝′

Claim: 𝑃′ is a coreset for 𝑃

Let 𝑓𝑎𝑟 𝑃, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑞
𝑝

𝑝′

Claim: 𝑃′ is a coreset for 𝑃

Let 𝑓𝑎𝑟 𝑃, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑓𝑎𝑟 𝑃, 𝑞 − 𝑓𝑎𝑟 𝑃′, 𝑞
≤ 𝑓𝑎𝑟 𝑃, 𝑞 − 𝑑𝑖𝑠𝑡 𝑝′, 𝑞
≤ 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

Claim: 𝑃′ is a coreset for 𝑃

Let 𝑓𝑎𝑟 𝑃′, 𝑞 = 𝑑𝑖𝑠𝑡(𝑝′, 𝑞)

𝑝 ≔ the point whose projection is 𝑝′

𝑞

𝑝
𝑝′

𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑓𝑎𝑟 𝑃, 𝑞
≤ 𝑓𝑎𝑟 𝑃′, 𝑞 − 𝑑𝑖𝑠𝑡 𝑝, 𝑞
≤ 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑝
𝑝′

𝑢

"𝜖

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑝
𝑝′

𝛼𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑢

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑟

𝑧

𝑟 ≔ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑟

𝑢

𝑝

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

Main observation:
Every ball that covers 𝑢 and 𝑧, has a diameter of at least 𝑟

𝑧
𝑟

𝑢

𝑞

𝑟 ≤ 2𝑓𝑎𝑟(𝑃, 𝑞)

𝑂 𝜖𝑟 ≤ 𝑂 𝜖 𝑓𝑎𝑟(𝑃, 𝑞)

Bounding 𝑑𝑖𝑠𝑡 𝑝, 𝑝′

𝑝′ ≔ the projection of 𝑝 on the “star”

𝑑𝑖𝑠𝑡 𝑝, 𝑝′ = sin 𝛼 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑑𝑖𝑠𝑡 𝑢, 𝑝
≤ 𝑂 𝜖 ⋅ 𝑟
≤ 𝑂 𝜖 ⋅ 𝑓𝑎𝑟(𝑃, 𝑞)

𝑧

𝑟 ≔ max
𝑝∈𝑃

𝑑𝑖𝑠𝑡(𝑢, 𝑝)

𝑟

𝑢

𝑝

